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We present an overview of the new methods for embedding Ising spins in continuous fields 
to achieve accelerated cluster Monte Carlo algorithms. The methods of Brower and Tamayo 
and Wolff are summarized and variations are suggested for the O(N) models based on 
multiple embedded 2, spin components and/or correlated projections. Topological features 
are discussed for the XY model and numerical simulations presented for d = 2, d = 3 and 
mean field theory lattices. c 1991 Academic Press. Inc. 

1. INTRODUCTION 

The cluster algorithms introduced by Swendsen and Wang [l] for the Potts 
model have recently been generalized to statistical systems and quantum field 
theories with continuous fields. For example, algorithms, which either eliminate or 
drastically reduce critical slowing down, have been proposed and tested by Brower 
and Tamayo [2] for the single component ild4-theory and by Wolff [3] for the 
N-vector spin models. Similar suggestions have been made by Niedermayer [4]. It 
has now become evident that these new embedded Swendsen-Wang algorithms can 
be applied to a wide range of field theories encountered in the Higgs sector of par- 
ticle physics and to continuous spin models of statistical mechanics. Moreover, 
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efforts are also underway to extend these embedding methods to continuous gauge 
theories [S]. 

The purpose of this paper is to give a brief overview of the central concept of 
embedding that makes possible these more powerful techniques. We will also pre- 
sent some new results for the XY model in d = 2 and d = 3 dimensions and in mean 
field theory (or infinite dimensions) limit. The mean field theory results are par- 
ticularly interesting because they are often an indication of the dynamics expected 
for the upper critical dimension (d= 4) encountered in applications to particle 
physics. In fact, based on the apparent absence of critical slowing down in our 
mean field simulations presented below, it is natural to conjecture that there is also 
no critical slowing down with the Wolff improved Swendsen-Wang algorithm for all 
the N-vector $4-theories at the upper critical dimension d = 4. 

2. EMBEDDING SCHEMES FOR CONTINUOUS FIELDS 

The Swendsen-Wang dynamics was first introduced for Potts models that have 
the special property of a single energy level per bond. This feature is essential to the 
application of the Fortuin-Kasteleyn map [6] and the physical properties of the 
Coniglio-Klein percolation clusters [7]. Until recently this discrete two-level 
feature appeared to militate against useful extensions to held theories with con- 
tinuous degrees of freedom. To apply these methods more widely, one is faced with 
the task of choosing a restricted set of states represented by discrete variables and 
augmenting the Swendsen-Wang dynamics with some other random process to 
ensure ergodicity. 

Heuristically, we can understand the recent success of embedding schemes of the 
Swendsen-Wang dynamics as follows. In the ideal algorithm, one would like to 
update the system from any equilibrium field configuration C’ = {g’(x)} to another 
C” = {g”(x)} in one cycle.’ How could a set of Z, variables ever approximate this 
ideal? We can of course introduce a set of Z, spin variables, s, = + 1, to connect 
these two configurations by defining a linear relation, 

Q(x) = a(x)+ s,b(x), (1) 

such that d’(x) + d”(x) as s, + -s,. For a general polynomial field theory, 

A = c KIIW)? Q(Y)1 f c UQ(x)l (2) x, .v x 

’ The spatial lattice sites are labelled by lower case x or y whereas the spin components in the O(N) 
model are labelled by superscripts 1,2, . . . . N or, in the case of the two-component XY model, by upper 
case X and Y. 
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the effective action for the discrete spins, s,, is 

Aefi = c Bx,~wy + c hxsm 
x, .v x 

an Ising model in a magnetic field.2 

(3) 

Of course this construction begs the question of how to pick the coefficients a(x) 
and b(x) so as not to upset detailed balance, and the question of whether any par- 
ticular Swendsen-Wang dynamics is in fact efficient. However, if we are close to a 
second-order phase transition, we expect that the coefficients a(x) and b(x) are 
generally smooth functions of x, inside the correlation length. Thus we can try to 
approximate the mapping by simple choices of a(x) and b(x) for which detailed 
balance is easy to impose and for which the Swendsen-Wang dynamics is easy to 
implement. 

For the single component embedding of Ref. [l], the choice was 

d”(X) = 4x)+ s.r W(x) - a(x)I (4) 

with a(x) taken to zero to simplify the action. Ergodicity was then enforced by 
alternating the Swendsen-Wang dynamics on the embedded s, variables with a 
local heat bath cycle on the d(x) variables. We also note that since we have defined 
the spins so that all the BXy’s are positive, the resulting effective theory has no 
frustrations. Also it should be noticed that ljXV = Id(x) 4(y)\, so that the percolation 
rate pxy = 1 - exp( - 28,) is turned off adiabatically as we approach small values of 
the fields. We feel this softening of the domain boundaries is essential to the success 
of the embedding. Moreover, the numerical result for the dynamical critical expo- 
nent indicates that this embedding maps d4-theory into the same dynamics univer- 
sality class as the Swendsen-Wang Ising dynamics. 

For the XY model considered by Wolff, we can embed Z, into the angular coor- 
dinate, 

eyx) = u(x) +s, lep) - u(x)l. (5) 

Again the effective action has the same form, Ae~=~,~V~,~y+ h,s,, where Wolff 
chose to eliminate the magnetic field by setting u(x) = & with 8, chosen to be a 
random variable on the interval (0, n). 

Let us reconsider Wolff’s embedding in a slightly different form suggestive of 
other generalizations. The constant, 8,, is a global rotation, so we can enforce 
ergodicity by literally performing such a random rotation between each update. If 
we now consider the complex #4-theory (as a variant on the XY model), we see at 
once how closely this is related to the real d4-theory example of Brower and 
Tamayo. Each XY component, real or imaginary, is treated exactly like the one real 
component in the #4-theory. It is natural also to extend the O(N) embedding to N 
copies of Zz variables, one for each component in the N-vector cb4-theory. The 
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multiple embedding for general O(N) introduces N types of spins, s”, for each 4” 
component, 

Q(x) = (s1 Ib,(X)l> s’, ld2(X)I, “‘3 s;” I4N(X)I). (6) 

Ergodicity is again enforced by a random rotation. 
Similar embeddings can be introduced for chiral models as well. If the 

action is given by tr( UL U,), one can introduce a discrete reflection U, + -Uz 
corresponding to s, + -s, and a random uniform “rotation” of the axes by 
U, -+ A&B, where A and B lie in the same unitary group as U, [S]. 

Now let us briefly recall the cluster dynamics that one can use on the effective 
Ising theory. It consists of three steps: 

1. Pick an embedding scheme and find the effective Ising action with percola- 
tion probabilities for the links pxy = 1 - exp[ -p,( 1 + s,sy)]. 

2. For Swendsen-Wang dynamics percolate the entire lattice and flip each 
cluster with 50% probability, or for the single cluster Wolff dynamics grow a single 
cluster from a random seed and flip it with 100% probability. 

3. If necessary for ergodicity, insert random rotation of axes or a local heat 
bath update on the full theory and return to the first step. 

For the Wolff single cluster scheme the effective “time” is resealed by the fraction 
of spins in a cluster relative to the entire lattice. Hence in both algorithms an auto- 
correlation time r refers to the number of passes through the entire lattice to 
decorrelate the system. 

3. TOPOLOGICAL FEATURES 

The work of Wolff [3] and Edwards and Sokal [9] on the d= 2 XY model has 
demonstrated a truly remarkable speedup of the critical dynamics associated with 
the Kosterlitz-Thouless transition. Additional evidence is presented in this paper 
for d= 2, d= 3, and mean field theory. To understand intuitively how this speedup 
might come about for d = 2, it is necessary to understand how the vortices can be 
rapidly reconhgured by the cluster update scheme. Consider the domain structure 
in both the spin variables corresponding to the real (X) and imaginary (Y) com- 
ponents (sk, 3:). A vortex is represented by the intersection of the type 1 (or X) and 
type 2 (or Y) domain walls. This picture can easily be understood by noting that 
the winding number, given by calculating the phase change in a circle around the 
intersection of the domain walls, must be +2x. Thus, the intersection of two 
domains will give a vortex and antivortex pair as seen in Fig. 1. A single cluster 
update for one of these variables (s-t or sz) is capable of destroying any or all of 
the vortices and creating a vastly different arrangement of vortices. 

A similar accelerated dynamics occurs for the cluster algorithms for the XY 
model in d= 3 and mean field theory. In d = 3, the intersections of the contours 
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FIG. 1. Embedded spins, S’ and s’, for the XY model projected against the X and Y axes, respec- 
tively. The intersection between the S’ domain wall (solid line) and the s2 domain wall (dashed line) 
locates a vortex-antivortex pair. 

represent the vortex tubes in space. Similarly if we look at the O(3) model in d= 3, 
we see that the mutual intersection of the three types of domain walls for (si, sf-, 3:) 
correspond to the “Hedgehog” solution. All of these intersections give position 
coordinates for the point defects in the continuum limit. On the lattice the choice 
of axis for the embedded spin projections only slightly alters the local crossing 
points for the domain walls. 

4. ERGODICITY 

In Refs. [2, 31, the overall ergodicity of the scheme was ensured by supple- 
menting the Swendsen-Wang process with another random process. Since the 
Swendsen-Wang process satisfies detailed balance by itself, it is sufficient if this new 
random process also satisfies detailed balance. For instance, in the single cluster 
update scheme, Wolff chose to project the spins against a random axis I?. More 
general choices are possible. For the O(N) model, we tried the following correlated 
axis approach: 

l Let one of the projection axes 2 be correlated to the vector $ at the seed 
by a symmetric probability distribution p(a), where c( is the angle between 4(x) 
and c?. 

If the axis is generally forced to align with the seed spin, one grows larger clusters 
on average, so one might expect even faster decorrelations. However, as one can see 
in Fig. 2b the fully aligned axis (a = 0) algorithm gives almost the same renor- 
malized decorrelation time T in 3D as Wolff’s random axis approach. 
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FIG. 2. (a) The relaxation time (r) for susceptibility autocorrelation vs lattice size for the 2D XY 
model. Triangles (A ): Swendsen-Wang; circles (0 ): aligned Wolff. (b) Susceptibility autocorrelation T 
for the 3D XY model. Triangles (A ): Swendsen-Wang; circles (0 ): aligned Wolff; squares (0 ): random 
Wolff. (c) Susceptibility t for the mean field XY model for the random Wolff update, where the linear 
size L is defined by N’14. 

5. SIMULATIONS AND CONCLUSIONS 

We have performed extensive simulations on the XY model in d= 2, d= 3, and 
mean field theory lattices. We have measured the autocorrelations and estimated 
the dynamical critical exponent z from finite size effects, i.e., 

z = const x L’, (7) 

where L is the linear size of the lattice. Figures 2a, b, and c summarize our present 
measurements of the susceptibility autocorrelations for d = 2, 3, and mean field 
theory, respectively. These simulations were run at p = 1.02, 0.474, and 2/(N- l), 
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respectively, N being the volume of the mean field system. These temperatures are 
in the scaling region, near the critical fl, of their respective systems. 

In two dimensions, the number of iterations were from 40 k for the largest lattice 
to 200 k for the smallest. For 3D, the number of iterations for both types of Wolff 
updates were from 500 to 1000 k, while the Swendsen-Wang algorithm varies from 
150 to 400 k iterations. The mean field simulations for the random Wolff algorithm 
were all 100 k iterations long. The r’s were extracted by fitting to a single exponen- 
tial decay mode of the correlation function. 

For two dimensions (Fig. 2a) the Swendsen-Wang algorithm shows a slope that 
is within the error bars of zero. The aligned Wolff algorithm has a negative slope 
with z = -0.53 5 0.02. This is a little surprising although not logically impossible. 
It is also possible that we are seeing finite size effects, and that this curve may 
flatten out as we go to higher lattice sizes; although there is no evidence for this so 
far. For three dimensions (Fig. 2b) z,, is small but nonzero. A lit puts the slope at 
0.18 f 0.021. The slope of both Wolff algorithms appears to be zero within the error 
bars. For mean field theory (Fig. 2c) there is data for the random Wolff algorithm 
only. The slope appears to approach zero asymptotically. 

The first thing to note is that for all simulations below the upper critical dimen- 
sion, the embedded dynamics for the XY model is faster than the corresponding 
pure Ising model. In fact, the Wolff and aligned algorithms are so fast in d = 2 and 
d= 3 that there is no apparent critical slowing down (in times resealed to a full 
lattice equivalent of updated spins). This is surprising in the sense that there is no 
theoretical analysis such as that provided by Fortuin and Kasteleyn and Coniglio 
and Klein for the Ising system to relate the percolation clusters to the XY model. 
We are investigating more closely the structure of the clusters in the XY model to 
try to establish such a connection. 

In conclusion, we have attempted to present an overview and a heuristic motiva- 
tion for the Z, embedding schemes for continuous field theories. Also we have 
pointed out (after the fact) how the topological solutions to the field theories are 
related to the multiple embedded Ising systems. This step along with other efforts 
to arrive at a “taxonomy” of cluster dynamics may help to inspire a real dynamical 
theory. 

We have also presented some additional simulations for the XY model in the 
mean field limit that exhibit zero critical slowing down for the Wolff single cluster 
update scheme. Since for the Ising model, the Wolff dynamics is consistent with 
zero critical slowing down for both mean field theory and 4D Wolff [lo], it is 
natural to conjecture that in general Wolff’s approach will give no critical slowing 
down for the upper critical dimension. It is an important goal for future simulations 
to give convincing numerical evidence for (or against) this conjecture for the entire 
class of 4D O(N) Higgs theories. Moreover, if critical slowing down is indeed 
absent, a major theoretical goal should be to find the underlying mechanism by 
which it is eliminated. We feel that ultimately, any “perfect” dynamics, with z = 0, 
can, like the fast Fourier transform for linear systems, be a source of deeper 
theoretical understanding of the physics of Higgs models. 
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